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Answer any three from the following questions : 3×20

1.  (a) Consider the series 
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(b) Find the radius of convergence of the power series 
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(c) Let     , 0,1n
nf x x x  . Show that the sequence of functions  nf is not uniformly

convergent. 4

(d) If a power series 
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  converges for 1x , then prove that the series converges

absoultely for all real x satisfying 1x x . 4

(e) Prove that the series 
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2. (a) Prove that
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(b) Show that the series 
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3. (a) A sequence nu  is defined by  2 1
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(b) Discuss the convergence of 
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4. (a) Let      1 , 0,1
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nf x nx x x    for each n N . Show thast the limit function  f

is continuous . But  nf x   does not converge to uniformly.. 10

(b) Prove that the series of functions
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5. (a) A function f  is defined on 
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(b) Find the radius of convergence of the power series
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6. (a) Prove that the series      2 2 221 1 1 ...x x x x x       is uniformly convergent on

[0, 1]. 10

(b) Prove that a power series can be differentiated term by term within the interval of

convergence. 10
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